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1 .o SUt.!%RV 

T h i s  design note describes the sequential prohahility ra t io  test 

(SF91) for 2-IMJ FDI. The SPCT is a s ta t i s t ica l  technique for  de t ec t -  

i n g  and isolatina sof t  ItW failures, originally developed for the 

strapdown inertial  reference u n i t  (EIRU) and l a t e r  adapted a t  Draper 

Labs to redundant qirballed I!IIJ's. T h i s  note docwents the eqiiatiorls 

and describe> the version of SPRT t h a t  w i l l  be used for  analysis a t  

JSC/!?DTSCO. Though some o f  the theory is discussed, a cowlete  

coverage of SPRT theory is  beyond the scope of this report and is  

releaated to the reference rater ia l  cited. The flowchart o f  a sub- 

routine incorporating the 2-IMU SPRT Is included, and is referred 

t o  i n  the text for i l lustration purposes. !!either t e s t  case d a t a  

nor perfomnce evaluation is inclu.:ed, as these will be published 

se pa ra t el y . 

2.0 * I t!TR@DUCTIOlI 

Last Sfptcnker the SPRT a l g o r i t h  vas baselincc! a t  the Level R 

OFT Entry S9R t o  perform the o n h r d  2 and 3 I W  FDI testinn dririno 

shcctle entry. 

SPRT subroutine was added t o  the IMUFDI triple - I N l  simulation 

program on the 3SC llnivac 1110 computer. The version o f  SPRT documented 

i n  th i s  report has evolved o u t  of the devcloprent work to date. Future 

developments i n  SPKT theory are anticipated and vi11 be documented i n  

forthcoming repwts.  The objective of the studies to  date has been t o  

optimize perfcrmance and sensit ivity of the algorithm. I.!ith this approach, 

In ordcr to  bo th  develm and verify the r!ethod, a 
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the margins between actual performance and external performance 

requirements m y  be easily established. 

- IFIPLE!!E?!TATIOIf DESCRIPTIOII 

T h i s  section describes the fPRT alTorithtn for nerforminr) t h e  

2-1KlJ FDI function w i t h  skewed shuttle IMl's. The SPRT subroutine 

of the ItWFDI program (flowcharted i n  Appendix 1)  is one of several 

versions of the SPRT algorithm that  have been explored i n  t h e  past 

two years. The version described i n  this report is f e l t  to  be both 

the most theoretically straightforward version, and also the version 

most a k i n  to the data tracking t e s t  (References 1 and Z ) ,  thereby 

enabling an accurate comparison betwen the two oethods. The 9raoer 

Labs version (Reference 3) differs  sl ivhtly frorr! t h i s  irtnlemntation 

i n  some areas. 

The basic ides of t h i s  FDI nethod i s  to  geovetricallv resolve 

a failure direction to one of four uniouely oriented acceleroveters 

or gyros contained i n  a pair of skewed Illl's (Reference 8 ) .  

IMU has one planar ( X Y )  and one sinclle axis (7.) acceleroreter, for 

a total  o f  4 acceleroneter instrrtnents per IT! p a i r .  In adc!ition, 

each IflU has 2 planar gyros ( X Y ,  7R) w i t h  the i t h  redundant (R) 

axis oriented i n  the plane of the XY gyro, 12" frorn the X axis. 

I t  i s  assumed for the 2-Itlll SPRT algori thm t h a t  the ZE gyro can 

f a i l  only along the Z axis, since any failtire w i t h  a component 

along the R axis would be detected by the redundant gyro monitor t e s t  

(Reference 5 ) .  Gyro d a t a  from the I axis can therefore be treated 

Each 
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as if Zt were sensed by a sinale ax is  Gyro. T h i s  assumption brings 

t h e  gyro set into correspondence w i t h  the accelerometer set (i.e., 

one XY and one Z axis instrunent per I lV) ,  thereby allo\.rin! thc 

same algorithr? t o  be used for both acceleroneter and qvro FDI. 

Ther? are r?inor differences i n  error measurenent calculation an? 

thresholding which will be described subsequently. 

Figure 1 i l lust rates  the functiona; flow of the 2-I!n7 SP2T. 

The method is  applicable to any p a i r  of 1IW's;  hovever, for  the 

sake of notational c lar i ty ,  IMU's f l  and E2 are sincled out i n  t h i s  

report. Major functions are discussed individually a s  follows: 

3.1 Error Heasurenent - Calculation 

T h i s  function takes output data fron the IPW's (CV's,?irhal 

angles) and forns a vector equal t o  the discrepancy (or error) 

between two 1:lLJ's. T h i s  error vector i s  then output i n  the coordinate 

system o f  each 1l:U stable platform. 

3.1.1 GJKO- 

The ayro error neasirrement is the "total relative visa1 icrnTent" 

vector, consisting of the off-diaFona1 elements of the Fatrices Q 

and C as shown i n  Figtire 2.a.  The variables  referred to i n  this 

firjure are described as follors: 

Gjn(n)  = is the Euler angle transformation r a t r i x  fron I'VI 

stable platform !j t o  the navination base, corputed 

us ing  the set  o f  9imbal angles read fror! IIIU Sj a t  

the nth tine step. 
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T B12 (n) = BZN(n) Blrl(n) is the gimbal angle derived 

transformation f r o m  IllU 81 to IMU 82 stable 

platforms a t  the nth time step. 
T Q = Gl2(1) 612(n) is the skew syrmetric matrix whose 

off-diagonal elements form the total  relative 

misal ignmcnt vector (oU ) i n  ?!?It ?I coordinates. 
¶ V  ,kt 

T C = Rl2(1) R12(n) is the skew synmtric natrix whose 

off-diagonal elements form the total relative 

misal ignmcnt vector (ox ) i n  IF111 t 2  coordinates. 
rY ,z 

I n  the real time computer the six small misalignment angles, Ou,v,w 

and Ox 

columns of the transformations R12(1) and R12 ( n ) .  

can be comptrted directly as dot  products of rows and 
SYIZ'  

3.1.2 Acceleromcter --- 
The accelerometer error neasurecent i s  the "incremental MY' 

vector formed by differencing I'XJ sensed N ' s  i n  the coordinate systms 

of each IMU cluster,  as shown i n  Fiyure 2.h. The current crimhal 

angle derived transformation, R12(n) ,  is trserl for  a l l  transformations 

to minimize the effects of gyro d r i f t  on accelerometer FI11. 

3.2 \!hiteninq Fil  t c r  

A f i rs t  order recursive f i l t e r  i s  used to transform thrt correlated 

IMU error measurenients in t o  a sequence o f  indcpendent samples. The 

theory for using a f i l t e r  i n  this way is whodied i n  the widely known 

result from estimation theory that the residuals o f  an  optimal Kalman 
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f i l t e r  cons t i t u te  a white Gaussian noise sequence (References 6 and 

7). 

by a s ing le  s tate estimator. The outputs o f  the f i l t e r s  are the 

I n  t h i s  SPRT implementation, each ax is  i s  f i l t e r e d  separately 

residuals formed by subtracting the f i l t e r  estimate from the actual 

IMU e r r o r  measurement. The whi tenin9 t r a n s f o r m t i o n  performed by 

t h i s  f i l t e r  i s  required because independancy o f  sarples i s  assumed 

i n  formulating the LLR update equation (Section 3 . h ) .  

3.2.1 F i l t e r  Equations 

F i r s t  pass i n i t i a l i z a t i o n :  

so = 0 
( -DELTAT/T ) = e  

State propagation 
A 

Residual conpu t a t  ion  
n 

rn = Yn - Sn 

S t a t 2  update 
A 

Sn = Sn + K rn 

where Sn = s ta te est inate a t  nth tiiw step 

= residual a t  nth time step ( f i l t e r  output) 'n 
Y, = Iriu er ro r  measurement a t  nth t ime step ( f i l t e r  i npu t )  

Y, = f i l t e r  gain (pre-mission c s t a n t )  

'I = Autocorrelat ion t ime constant (pre-mission constant) 

The above f i l t e r  i s  used f o r  both gyro and accelerometer data; the 

only di f ference being i n  d i f ferent  s ta te update gains (K), which a r e  

l l s t e d  i n  section 4.2. 
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3.2.2 Pre-mission F i l t e r  Tuning 

The f i l t e r  gains nentioned above were computed pre-mission 

v ia  a tuning procedure derived from rlehrd, Reference 6, which 

bas ica l l y  states t h a t  the op t ima l i t y  o f  the f - i l t e r  can be measured 

by IIOK uncorrelatcd the res iduals  are. I n  a rou t i ne  w r i t t e n  f o r  

the Univac 1110 Demand terminal, the  f i l t e r  gains were var ied 

u n t i l  the average autocovariance of the f i l t e r  res iduals  over 

30 Monte Carlo cycles was zeroed out. The procedure used for 

ca lcu la t ing  the average au tocovariance f o l  lows: 

Step 1. Calculate a residual  Pean for  each of F; axes i n  each 

Honte Carlo Cycle hctveen the times 3n5 and 1205 ( t h i s  

time period contains no vehic le  a t t i t u d e  transients): 

1295 c rt 'axis, cyc le  - w t=3n5 
- 1 

by 5 

Step 2. Calculate t h e  f i r s t  autocovariance coef f i c ien t ,  R ( 1 ) ,  

f o r  each o f  6 axes i n  each I?onte Carlo cycle: 

by 5 

Step 3 .  Calculate the averape autocovariancc c o c f f i c i e n t .  

Pave t T ~ o  1- axis=) 5 cyc le=l  E Paxis, cyc le  
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Repeat steps 1 through 3 on residuals acquired by i terating on the 

f i l ter  gain K u n t i l  a pave o f  approx!mately zero is obtained. 

Uhile computing the gyro g a i n  o f  section 4.2 (rGvR0 = .54) 

the following autocovariances were obtained: 

pave = -.4? 

pmi n 

plXiX 

= -34.7: (X axis, I?!lt t'2, cycle !20) 

= 64.25 (X ax i s ,  It!U f 2 ,  cycle "27) 

While computing the accelerometer Fa in  of section 4.2 (KAcCL = .n04) 

the followina autocovariances were obtained: 

. l Z  - - 
Pave 

' m i  n 

Prte x 

= -52.0Z (2 ax i s ,  I N  %2, cycle 323) 

= 81.9% (2 axis ,  1F.W 62, cycle ?30) 

3.3 LLR Parameter Calculation 
-PI 

The LLR update described i n  section 3.4 reqrrircs two parareters 

to compute the LLR - the classification threshold and the standard 

deviation for  the f i l  tcr  residuals. 

3.3.1 Residual Threshold 

The SPRT alpori thm requires thresholds separating residuals 

indicative of fa i lure  operation from residuals encountered Crtirinn 

nominal operation. As i n  a l l  threshold type tes t s ,  i t  i s  desirahle 

to  have the threshold ti7htly f i t t ed  for crrtatcr sensit ivitv,  yet  

s t i l l  h i g h  enoucth so t h a t  no fa lse  alarms are prodriced rindcr noq ina l  

operation. The failure residual thresholds used i n  this version 

o f  SPRT were gcnerated by multiplyin? a base fa i lure  threshold 

(Figure 3) by a dynamic scaling factor which accounts for thc f i l t e r  
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effects of bias  attenuation and a t t i t u d e  zansients .  The base 

thresholds, specified i n  section 4.4,  are the sane clnscly f i t t ed  

thresholds used i n  the data tracking tes t  (Reference 1) .  The 

scaling factor r , derived frori Reference 8 ,  i s  calculated by: 

where: 

-At /T  i n  which Q = e 
K = f i l t e r  g a i n  

pNB = percentage attributed to vehicle 

a t t i tude transients (Section .5) 

j i s  set  equal to n whenever the greateqt. 

gimbal angle change exceeds the limit 

AGim (section 4.5)  

The final threshold i s  then 

B W  = r ( t )  T ( t )  

which i s  plotted i n  Fiqurc! 3. 

3.3.2 Residual Standard  Devisti,.r 

I n  addition t o  the residual threshold, the SPRT requires 

a residual standard deviation charactcritinq thc "spread" of 
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nominal da ta .  Standard deviat ions were computed a t  several  t i n e  

s l o t s  by the formula 

Residual standard deviat ions \rere found t o  be f a i r l y  constant  a t  

the values given i n  sect ion 4.5 .  

3.4 Log Likelihood - Pittin l lpda ter  - 
The l ikel ihood r a t i o  i s  t.he heart of the SPPT a l ? o r i J h ,  

being proportiona: t o  the probabi l i ty  t h a t  a f a i l u r e  has C.L :red. 

The - loci of the  l ikcl ihood r a t i o  is used t n  avoid conmta t ion  of  

the EXP function ai: each t i v  point .  Lori l ikel ihood r a t io ;  ( l - l .n 's )  

are comFuted sequent ia l ly ,  F O ~ C  1 in! the Til t c r  rp s idx i l s  3s i-*!p?.:n:!mt 

Gaussian samples (not necessar i ly  zero m a n ' .  usin? the residual  

thresholds and sinnas conputed i n  sec t ion  3 . 3 .  

the LLF! f o r  each a x i s  i s  spli t  i n t o  two srih-I.LE's, one fo r  pos i t i ve  

In t h i s  ioplcmcntation 

and one f o r  n q a t i v e  f a i l u r e s ,  s ince  e i t h c r  po la r i ty  i s  assuned 

equal ly  l i ke ly .  The L.LR eqriations follo;.:: 
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LLR Reset 
-_I_ 

+ + If An < 0 then A,, = 0 

I f  A i  < 0 then A i  = 0 

Take the biggest: 
+ An = max (An, A i )  

3.5 LLR Threshold Calculation - 
The LLR fa i lure  decision threshold is calculated according t o  

Reference 9 ,  using the residual thresholds and s i q s  from section 

3.3, by the folloninq eqiation: 

W( t )  = I n  (ZER*(t)/ALPi!A T*) 

3.6 -- Sinrlle Ar.is/lrual !!xis FDI Locic 

T h i s  FDI function perfoms a threshold t e s t  an the 6 error 

neasurenent channels for each ir,stnir.ent tyw,  both acceleroceter 

* and gyro. tach instrment (2DOF, IDOF) is tested ineependently 

for  evidence of failure. For example, if  ei ther the X o r  the Y 

gyro rneasurenent from IXU 81 is  out o f  tolerance, the fai lure  has 

bcen detected 5n the XVl tyro. Figure 4 shows the logic by which 

i n d i v i d u a l  instrunont fa i lure  detection t e s t  are conbincd to i s o -  

late the failure t o  a particular instrunent. An Il-IU failtirr? has 

teen detccte: when a t  least  - one o f  the four instruments of either 

type, gyro or accclcroveter, i s  out of tolerance. 

inplenentation, a t  least  - tw simultaneous threshold crossincq out 

o f  the four instrurents is required tvforc an PI! fa i lure  detection 

i s  registered. A single threshold crossing would be sufficicnt,  

I n  the IV[!FDI 
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but is also potentially more susceptible t o  false alarms. A failurc! 

can be isolated when exactly I- three of four instr*nents sinul taneously 

show out-of-tolerance measurments. The 1W where the fai lure  has 

been detected i n  b o t h  instrments is the unfailed Ih!!J, since two 

detections would be indicative o f  a simultaneous fai lure  - an assumed 

impossibility. Consequently, the II!V i n  which the fai lure  has been 

detected on only one instrument neasurericnt is the failed I!.!U. The 

case of - four simultaneous threshold crossing5 (not covered i n  the 

flowchart o f  Figure 4 )  is an ahnomal condition and should be flagged 

to the crew. 

4.0 RESULTS 

The followin9 paragraphs present a croup o f  constants, pertinent 

to  the 2-1!1U SPRT alCorithm, t h a t  were used i n  the I’’!IFDf prooram 

to generate the resiilts contained i n  Reference In. These constants 

apply t:, the reference m’ssion 3C entry trajectory. 

4.1 Time Step 

DELTAT = 5 sec. 

4.2 Fi l te r  Constants 

Autocorrel a t i  on t ine cmstant : 

= 120 sec. - 
‘GYRO - *ACCL 

Fil ter  gains:  

l;CVRO = ,54 

K*ccL = .os4 
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4.3 

4.4 

4.5 

Start  - Stop Tines - 
= 0 (400,000 ft.) 

= 1945 (Touchdown) 
Tstar t  

Tend 

Rase Failure Th-esholds 

Gyro: 

_I_ 

3 

i =o 
TG(t) = Ci ti (radians) 

Co = 3.7000 E-4 

C, = 3.4967 E-6 

C p  =-1.1786 E-10 

C3 =-5.8263 E-13 

Accel erone ter : 

for Wt<1145, -- 

3 

i =o 
TA(t) = Ci ti ( Inlsec) 

Cg = 2.830r) E-5 

c1 = 4.3593 E-8 

C2 =-5.3665 E-11 

C3 = 9.7743 E-14 

for t>llh5, 

T A ( t )  = TA(t=1145) 

- LLR Constas: 

Gyro : 

PNB = *I5 

cG = 2.4 E-4 radians 
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Pccel erometer : 

P1,B = 08 

= 1.2 E-5 Y./sec 'A 

4.C Plean Tine t'etwen False Alarms - 
T=5000 sec 

'lean False Alarn Rate: 

ALPP'=DELTAi/T=l 0-3 
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APPEHDIX 1 

Flowchart o f  the  SPRT Subroutine 
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SUFROUTIIIES CALLFD RY SPRT 

I )  WlTX11 (!I1 , M2, ?13) 

Matrix transposed tires a rutrix. 

f13 = f.1, T !*I* 

2) D:4XtlT (??, , f12, M3) 

tlatrix tines matrix transposed 

3) ONTXV (?Il, Vz, V3) 

Matrix transposed tines a vector 

4)  D!4XV (Il l ,  V2,  V 3 )  

!.latrix t i m s  a vector 

5 )  DVSUP (Ql, Y2, V j )  

Vector suhtrac t ion 

Thc above suhrautines assme t h a t  a l l  v e c t t r s  and mtrices are 

diriensioncd ( 3 )  and ( 3 , 3 ) ,  respectively. 

6 )  TII.’,ESl a x !  TI tXX! are use? by the driver pro?rm to provitk a 

surmary o f  detection and isolation t ines  a t  the end of a rulti  

tlonte Carlo cycle run. 

7)  DVSCLP, (SCALAR,* V 2 *  V 3 )  

Scalar tines a vcctw 
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8) DVAOD (VIS V2$ V3) 

Vector Addition 

v3 = VI + v2 


